- Distribusi normal indikator – indikator multivariate (Multivariate normal distribution of the indicators)
Masing-masing indikator mempunyai nilai yang berdistribusi normal terhadap indikator lainnya. Karena permulaan yang kecil normalitas multivariat dapat menuntun kearah perbedaan yang besar dalam pengujian chi-square, dengan demikian akan melemahkan kegunaannya. Secara umum, pelanggaran asumsi ini menaikkan chi-square sekalipun demikian didalam kondisi tertentu akan menurunkannya. Selanjutnya penggunaan pengukuran ordinal atau nominal akan menyebabkan adanya pelanggaran normalitas multivariat. Perlu diperhatikan bahwa normalitas multivariat diperlukan untuk estimasi kemiripan maksimum / maximum likelihood estimation (MLE), yang merupakan metode dominan dalam SEM yang akan digunakan untuk membuat estimasi koefesien – koefesien (jalur) struktur. Khusus MLE membutuhkan variabel-variabel endogenous yang berdistribusi normal.
Secara umum, sebagaimana ditunjukkan dalam suatu studi-studi simulasi menunjukkan, bahwa dalam kondisi – kondisi data yang sangat tidak normal, estimasi-estimasi parameter SEM, misalnya estimasi jalur masih dianggap akurat tetapi koefesien-koefesien signifikansi yang bersangkutan akan menjadi terlalu tinggi sehingga nilai-nilai chi-square akan meningkat. Perlu diingat bahwa untuk uji keselarasan chi-square dalam model keseluruhan, nilai chi-square tidak harus signifikan jika ada keselarasan model yang baik, yaitu: semakin tinggi nilai chi-square, semakin besar perbedaan model yang diestimasi dan matrices kovarian sesungguhnya, tetapi keselarasan model semakin buruk. Chi-square yang meninggi dapat mengarahkan peneliti berpikir bahwa model-model yang sudah dibuat memerlukan modifikasi dari apa yang seharusnya. Kurangnya normalitas multivariat biasanya menaikkan statistik chi-square, misalnya, statistik keselarasan chi-square secara keseluruhan untuk model yang bersangkutan akan bias kearah kesalahan Type I, yaitu menolak suatu model yang seharusnya diterima. Pelanggaran terhadap normalitas multivariat juga cenderung menurunkan (deflate) kesalahan-kesalahan standar mulai dari menengah sampai ke tingkat tinggi. Kesalahan-kesalahan yang lebih kecil dari yang seharusnya terjadi mempunyai makna jalur-jalur regresi dan kovarian-kovarian faktor / kesalahan didapati akan menjadi signifikan secara statistik dibandingkan dengan seharusnya yang terjadi.
- Distribusi normal multivariat variabel-variabel tergantung laten ( Multivariate normal distribution of the latent dependent variables).
Masing-masing variabel tergantung laten dalam model harus didistribusikan secara normal untuk masing-masing nilai dari setiap variabel laten lainnya. Variabel-variabel laten dichotomi akan melanggar asumsi ini karena alasan-alasan tersebut.
- Linieritas (Linearity).
SEM mempunyai asumsi adanya hubungan linear antara variabel-variabel indikator dan variabel-variabel laten, serta antara variabel-variabel laten sendiri. Sekalipun demikian, sebagaimana halnya dengan regresi, peneliti dimungkinkan untuk menambah transformasi eksponensial, logaritma, atau non-linear lainnya dari suatu variabel asli ke dalam model yang dimaksud.
- Pengukuran tidak langsung (Indirect measurement):
Secara tipikal, semua variabel dalam model merupakan variabel-variabel laten.
- Beberapa indikator (Multiple indicators).
Beberapa indikator harus digunakan untuk mengukur masing-masing variabel laten dalam model. Regresi dapat dikatakan sebagai kasus khusus dalam SEM dimana hanya ada satu indikator per variabel laten. Kesalahan pemodelan dalam SEM membutuhkan adanya lebih dari satu pengukuran untuk masing-masing variabel laten.
- Rekursivitas (Recursivity):
Suatu model disebut rekursif jika semua anak panah menuju satu arah, tidak ada arah umpan balik (feedback looping), dan faktor gangguan (disturbance terms) atau kesalahan tersisa (residual error) untuk variabel-variabel endogenous yang tidak dikorelasikan. Dengan kata lain, model-model recursive merupakan model dimana semua anak panah mempunyai satu arah tanpa putaran umpan balik, dan peneliti dapat membuat asumsi kovarian – kovarian gangguan kesalahan semua 0. Hal itu berarti bahwa semua variabel yang tidak diukur yang merupakan determinan dari variabel-variabel endogenous tidak dikorelasikan satu dengan lainnya sehingga tidak membentuk putaran umpan balik (feedback loops). Model – model dengan gangguan kesalahan yang berkorelasi dapat diperlakukan sebagai model recursive hanya jika tidak ada pengaruh-pengaruh langsung diantara variabel-variabel endogenous
- Data interval:
Sebaiknya data interval digunakan dalam SEM. Sekalipun demikian, tidak seperti pada analisis jalur tradisional, kesalahan model-model SEM yang eksplisit muncul karena penggunaan data ordinal. Variabel-variabel exogenous berupa variabel-variabel dichotomi atau dummy dan variabel dummy kategorikal tidak boleh digunakan dalam variabel-variabel endogenous. Penggunaan data ordinal atau nominal akan mengecilkan koefesien matriks korelasi yang digunakan dalam SEM. Jika data ordinal yang digunakan maka sebelum di analisis dengan SEM, data harus diubah ke interval dengan menggunakan method of successive interval (MSI)
- Ketepatan yang tinggi:
Apakah data berupa data interval atau ordinal, data-data tersebut harus mempunyai jumlah nilai yang besar. Jika variabel – variabel mempunyai jumlah nilai yang sangat kecil, maka masalah-masalah metodologi akan muncul pada saat peneliti membandingkan varian dan kovarian, yang merupakan masalah sentral dalam SEM.
- Residual-residual acak dan kecil:
Rata-rata residual – residual atau kovarian hasil pengitungan yang diestimasikan minus harus sebesar 0, sebagaimana dalam regresi. Suatu model yang sesuai akan hanya mempunyai residual – residual kecil. Residual – residual besar menunjukkan kesalahan spesifikasi model, sebagai contoh, beberapa jalur mungkin diperlukan untuk ditambahkan ke dalam model tersebut.
- Gangguan kesalahan yang tidak berkorelasi (Uncorrelated error terms)
Seperti dalam regresi, maka gangguan kesalahan diasumsikan saja. Sekalipun demikian, jika memang ada dan dispesifikasi secara eksplsit dalam model oleh peneliti, maka kesalahan yang berkorelasi (correlated error) dapat diestimasikan dan dibuat modelnya dalam SEM.
- Kesalahan residual yang tidak berkorelasi (Uncorrelated residual error): Kovarian nilai – nilai variabel tergantung yang diprediksi dan residual – residual harus sebesar 0.
- Multikolinearitas yang lengkap: • multikolinearitas diasumsikan tidak ada, tetapi korelasi antara semua variabel bebas dapat dibuat model secara eksplisit dalam SEM. Multikolinearitas yang lengkap akan menghasilkan matriks – matriks kovarian tunggal, yang mana peneliti tidak dapat melakukan penghitungan tertentu, misalnya inversi matrix.
- Multikolinearitas yang lengkap:
Multikolinearitas diasumsikan tidak ada, tetapi korelasi antara semua variabel bebas dapat dibuat model secara eksplisit dalam SEM. Multikolinearitas yang lengkap akan menghasilkan matriks – matriks kovarian tunggal, yang mana peneliti tidak dapat melakukan penghitungan tertentu, misalnya inversi matrix karena pembagian dengan 0 akan terjadi.
- Ukuran Sampel
Tidak boleh kecil karena SEM bergantung pada pengujian-pengujian yang sensitif terhadap ukuran sampel dan magnitude perbedaan-perbedaan matrices kovarian. Secara teori, untuk ukuran sampelnya berkisar antara 200 – 400 untuk model-model yang mempunyai indikator antara 10 – 15. Satu survei terhadap 72 penelitian yang menggunakan SEM ditemukan median ukuran sampel sebanyak 198. Sampel di bawah 100 akan kurang baik hasilnya jika menggunakan SEM.