PENGERTIAN SEM (SKRIPSI DAN TESIS)

Karakteristik dasar penggunaan SEM harus melibatkan dua jenis variable, yaitu variable observasi dan laten. Variabel observasi mempunyai data seperti data angka atau skala penilaian yang diambil dari kuesioner. Disamping data tersebut di depan, Variabel observasi dalam SEM mencakup pula data kontinus. Sedang variable laten adalah variabel yang secara tidak langsung teramati namun peneliti ingin mengetahuinya. Untuk melakukan observasi variable laten peneliti harus membuat model-model yang mengekspresikan variable-variabel laten sebagai variabel observasi. Dalam SEM semua variable laten merupakan variable kontinus dan secara teori mempunyai jumlah nilai yang tidak terbatas. Contoh-contoh variable laten dalam ilmu ekonomi konsentrasi bidang pemasaran, misalnya sikap terhadap merek, kepuasan pelanggan, nilai yang diterima (perceived value),  keinginan melakukan pembelian ulang, dan kualitas yang dilihat (perceived quality)

 

Secara umum ada dua variable yang penting dalam riset, yaitu variable-variabel yang tergantung pada variable lain yang disebut sebagai variable “tergantung” dan variable-variabel yang  tidak tergantung terhadap varaibel lain yang kemudiandisebut sebagai variable “bebas”. Dalam konteks SEM variable-variabel tergantung disebut juga sebagai variabel “endogenous” dan  “exogenous,” untuk variable-variabel bebas. Dalam contoh hubungan linier yang diekspresikan dalam persamaan di bawah ini Persamaan tersebut bermakna bahwa nilai yang dilihat untuk kasus “i” merupakan jumlah kualitas “i” dikalikan dengan koefesien “a,” harga untuk “i” dikalikan dengan koefesien “b,”ditambah “error.” Eerror term ini mewakili bahwa sebagian nilai yang dilihat untuk kasus “i” yang tidak tertangkap oleh dependensi s linier terhadap kualitas dan harga. Jika dikombinasikan dengan beberapa asumsi, maka persamaan tersebut menggambarkan  suatu model nilai yang mungkin tergantung pada kualitas dan harga.

Nilai i = a x kualitas  i + b x harga  i + error i

Pada saat melakukan pencocokkan suatu model sebagaimana model dalam persamaan di atas, maka sebenarnya kita sedang membuat estimasi untuk koefesien-koefesien “a” dan “b” yang meminimumkan fungsi kesalahan tertentu di observasi-observasi yang sedang dilakukan, dengan keberadaan error yang diasumsikan. Dalam model yang dibuat di atas mengasumsikan bahwa semua kasus dalam sekumpulan data tersebut mempunyai nilai-nilai sama untuk “a” dan “b.” Nilai-nilai tersebut cocok dalam populasi. Persamaan di atas nampak seperti persamaan regresi tanpa intercept di sebelah kanan. Koefesien-koefesien “a” dan “b” mewakili koefesein-koefesein regresi. “nilai,” “kualitas” dan “harga” merupakan variable-variabel observasi. “Error” merupakan perbedaan antara nila-nilai yang observasi dan yang diprediksi.untuk masing-masing kasus. Persamaan tersebut dapat juga dilihat sebagai gambaran suatu model faktor dimana variable observasi disebut “load” nilai pada dua faktor, yaitu “kualitas” dan “harga”; sedang error dapat disebut sebagai “keunikan”. Dalam persepktif ini, maka kualitas dan harga merupakan variable-variabel laten