UNSUR YANG MENENTUKAN ULANGAN DALAM PERCOBAAN/EKSPERIMEN (skripsi dan tesis)

Jumlah r (ulangan) yang diperlukan dalam suatu percobaan dipengaruhi oleh 3 hal, yaitu:

  1. Derajat ketelitian, makin tinggi derajat ketelitian yang diinginkan dari percobaan akan makin besar pula jumlah r yang diperlukan, dan sebaliknya jika derajat ketelitian yang diperlukan makin rendah
  2. Keragaman bahan, alat, media dan lingkungan percobaan. Jika bahan, alat, media dan lingkungan percobaan makin heterogen maka jumlah r yang diperlukan makin besar dan sebaliknya jika bahan, alat, media dan lingkungan percobaan makin homogen maka jumlah r yang diperlukan makin sedikit.
  3. Biaya penelitian yangtersedia, karena bagaimanapun juga biaya merupakan faktor penentu dalam penelitian, jika biaya yang diperukan suatu percobaan cukup besar, maka jumlah r dapat diperkecil dan sebaliknya jika biaya percobaan tidak terlalu besar

 

(Kemas, 2012)

Tujuan Analisis Isi (skripsi dan tesis)

Tahapan awal dalam menyusun desain riset ialah menentukan dengan jelas
tujuan analisis isi. Hanya dengan tujuan yang jelas, maka desain riset juga dapat dirumuskan dengan jelas pula. Mengapa? Karena desain riset pada dasarnya dibuat untuk menjawab pertanyaan dalam tujuan penelitian. Seperti analogi pembangunan rumah sebelumnya. Seseorang arsitek tidak akan dapat bekerja tanpa terlebih dahulu bertanya kepada pemilik. Pemiliklah yang akan menuntun rumah seperti apa yang ingin dia bangun. Dilihat dari tujuan analisis isi, peneliti harus menentukan apakan analisis isinya hanya ingin menggambarkan karakteristik dari pesan ataukan analisis isi lebih
jauh ingin menarik kesimpulan penyebab dari suatu pesan tertentu. Kedua tujuan penelitian ini, akan membawa konsekuensi pada desain riset yang akan dibuat. Jika peneliti hanya ingin menggambarkan secara detail isi (content), maka ia hanya fokus pada variabel yang ada pada isi. Sementara jika peneliti ingin mengetahui penyebab dari suatu isi, maka peneliti harus memerhatikan faktor lain (mungkin diluar analisis isi) yang berdampak pada isi. Di bawah ini akan diuraikan satu demi satu dari analisis isi ini. Pertama, menggambarkan Karakteristik Pesan (describing the characteristics of message). Analisis isi banyak dipakai untuk menggambarkan karakteristik dari suatu pesan. Dalam bahas holsti (1969:28), analisis isi disini dipakai untuk menjawab pertanyaan “what, to whom, dan how” dari suatu proses komunikasi. Pertanyaan “what”
berkaitan dengan penggunaan analisis isi untuk menjawab pertanyaan mengenai apa isi dari suatu pesan, tren, dan perbedaan antara pesan dari komunikator yang berbeda. Pertanyaan “to whom” dipakai untuk menguji hipotesis mengenai isi pesan yang ditujukan untuk khalayak yang berbeda. Sementara pertanyaan “how” terutama berkaitan dengan penggunaan analisis isi untuk menggambarkan bentuk dan teknikteknik pesan (misalnya, persuasi

Klasifikasi Metode Prakiraan/Perkiraan/Forecasting (skripsi dan tesis)

Pada umumnya teknik prakiraan dapat dibedakan menjadi beberapa jenis tergantung dari cara melihatnya, yaitu :

  1. Dilihat dari sifat penyusunannya
  2. Prakiraan yang subjektif, yaitu prakiraan yang didasarkan atas perasaan atau intuisi dari orang yang menyusunnya. Dalam hal ini pandangan orang yang menyusunnya sangat menentukan baik tidaknya hasil prakiraan tersebut.
  3. Prakiraan yang objektif, yaitu prakiraan yang didasarkan atas data yang relevan pada masa lalu, dengan menggunakan teknik-teknik dan metode-metode dalam penganalisaannya.
  4. Dilihat dari jangka waktu prakiraannya
  5. Prakiraan jangka pendek (short term forecasting), yaitu prakiraan yang dilakukan untuk penyusunan hasil prakiraan yang jangka waktunya harian hingga setiap jam.
  6. Prakiraan jangka menengah (mid term forecasting), yaitu prakiraan yang dilakukan untuk penyusunan hasil prakiraan yang jangka waktunya mingguan hingga bulanan.
  7. Prakiraan jangka panjang (long term forecasting), yaitu prakiraan yang

dilakukan untuk penyusunan hasil prakiraan yang jangka waktunya tahunan atau beberapa tahun kedepan. Biasanya dapat digunakan untuk mempersiapkan ketersediaan unit pembangkitan, sistem transmisi, serta distribusi.

  1. Dilihat dari sifat prakiraan yang telah disusun
  2. Prakiraan kualitatif, yaitu prakiraan yang didasarkan atas kualitatif pada masa lalu. Hasil prakiraan yang dibuat sangat tergantung pada orang yang menyusunnya. Hal ini penting karena hasil prakiraan tersebut ditentukan berdasarkan pemikiran yang berfsifat intuisi, judgement atau pendapat dan pengetahuan serta pengalaman dari penyusunnya
  3. Prakiraan kuantitatif, yaitu prakiraan yang didasarkan atas data kuantitatif pada masa lalu. Hasil prakiraan yang dibuat sangat tergantung pada metode yang digunakan dalam prakiraan tersebut. Dengan metode yang berbeda akan diperoleh hasil prakiraan yang berbeda, adapun yang perlu diperhatikan dari penggunaan metode tersebut, adalah baik tidaknya metode yang digunakan, sangat ditentukan oleh perbedaan atau penyimpangan antara hasil prakiraan dengan kenyataan yang terjadi.

Metode yang baik adalah metode yang memberikan nilai-nilai perbedaanatau penyimpangan yang mungkin. Prakiraan kuantitatif hanya dapat digunakan apabila; adanya informasi tentang keadaan lain, informasitersebut dapat dituliskan dalam bentuk data, dan dapat diasumsikan bahwa pola yang lalu akan berkelanjutan pada masa yang akan datang.

Pengertian Peramalan/Perkiraan/Forecasting (skripsi dan tesis)

Prakiraan pada dasarnya merupakan suatu dugaan atau prediksi mengenai terjadinya suatu kejadian atau peristiwa di masa yang akan datang. Prakiraan dapat disebut juga dengan peramalan yang ilmiah (educated guess). Setiap pengambilan keputusan yang menyangkut keadaan di masa yang akan datang, maka pasti ada prakiraan yang melandasi pengambilan keputusan tersebut (Assauri, 1984). Prakiraan adalah penggunaan data masa lalu dari sebuah variabel atau kumpulan variabel untuk mengestimasi nilainya di masa yang akan datang. Asumsi dasar dalam penerapan teknik prakiraan adalah:

“if we can predict what the future will be like we can modify our behaviour now to be in a better position, than we otherwise would have been, when the future arrives”.
 Artinya, jika kita dapat memprediksi apa yang terjadi di masa depan maka kita dapat mengubah kebiasaan kita saat ini menjadi lebih baik dan akan jauh lebih berbeda di masa yang akan datang. Hal ini disebabkan kinerja di masa lalu akan terus berulang setidaknya dalam masa mendatang yang relatif dekat (Murahartawaty, 2009)

Konsep Dasar Time Series (skripsi dan tesis)

Time series adalah suatu rangkaian atau seri dari nilai-nilai suatu variabel atau hasil observasi, dalam hal ini adalah nilai indeks harga saham, yang dicatat dalam jangka waktu yang berurutan (Atmaja, 2009: 29). Metode time series adalah metode peramalan dengan menggunakan analisa pola hubungan antara variabel yang akan diperkirakan dengan variabel waktu atau analisis time series, antara lain:
1. Metode Smoothing
 2. Metode Box–Jenkins (ARIMA)
3. Metode Proyeksi trend dengan Regresi.
Hal yang perlu diperhatikan dalam melakukan peramalan adalah pada galat (error), yang tidak dapat dipisahkan dalam metode peramalan. Untuk mendapatkan hasil yang mendekati data asli, maka seorang peramal berusaha membuat error-nya sekecil mungkin. Dengan adanya data time series, maka pola gerakan data dapat diketahui.
Dengan demikian, data time series dapat dijadikan sebagai dasar untuk:
 a. Pembuatan keputusan pada saat ini.
 b. Peramalan keadaan perdagangan dan ekonomi pada masa yang akan datang.
c. Perencanaan kegiatan untuk masa depan. Analisa data time series adalah analisa yang menerangkan dan mengukur berbagai perubahan atau perkembangan data selama satu periode (Hasan, 2002: 184).
Analisis time series dilakukan untuk memperoleh pola data time series dengan menggunakan data masa lalu yang akan digunakan untuk meramalkan suatu nilai pada masa yang akan datang.

Sifat Peramalan (skripsi dan tesis)

Berdasarkan sifatnya, peramalan dibedakan menjadi:

1. Peramalan Kualitatif
Peramalan yang didasarkan atas data kualitatif pada masa lalu. Hasil peramalan kualitatif didasarkan pada pengamatan kejadian–kejadian di masa sebelumnya digabung dengan pemikiran dari penyusunnya.
2. Peramalan Kuantitatif
Peramalan yang didasarkan atas data kuantitatif masa lalu yang diperoleh dari pengamatan nilai–nilai sebelumnya. Hasil peramalan yang dibuat tergantung pada metode yang digunakan, menggunakan metode yang berbeda akan diperoleh hasil peramalan yang berbeda.

Pengertian Peramalan (skripsi dan tesis)

Peramalan pada dasarnya merupakan proses menyusun informasi tentang kejadian masa lampau yang berurutan untuk menduga kejadian di masa depan (Frechtling, 2001: 8). Peramalan bertujuan mendapatkan ramalan yang dapat meminimumkan kesalahan meramal yang dapat diukur dengan Mean Absolute Percent Error (MAPE) (Pangestu, 1986: 1). Peramalan pada umumnya digunakan untuk memprediksi sesuatu yang kemungkinan besar akan terjadi misalnya kondisi permintaan, banyaknya curah hujan, kondisi ekonomi, dan lain-lain. Atas dasar logika, langkah dalam metode peramalan secara umum adalah mengumpulkan data, menyeleksi dan memilih data, memilih model peramalan, menggunakan model terpilih untuk melakukan peramalan, evaluasi hasil akhir.

Kelemahan Dalam Analytic Hierarchy Process (AHP) (skripsi dan tesis)

kelemahan metode AHP adalah sebagai berikut :

  1. Ketergantungan model AHP pada input utamanya. Input utama ini berupa persepsi seorang ahli sehingga dalam hal ini melibatkan subjektifitas sang ahli selain itu juga model menjadi tidak berarti jika ahli tersebut memberikan penilaian yang keliru.
  2. Metoda AHP ini hanya metoda matematis tanpa ada pengujian secara statistik sehingga tidak ada batas kepercayaan dari kebenaran model yang terbentuk.

Keuntungan Dalam Analytic Hierarchy Process (AHP) (skripsi dan tesis)

Keuntungan dari AHP sebagai berikut :

  1. Unity

 AHP menyediakan model tunggal, mudah dipahami, fleksibel untuksuatu cakupan luas tentang permasalahan tidak tersusun

  1. Complexity

 AHP mengunakan pendekatan dedukatif dan sistem dalam memecahkan masalah yang rumit.

  1. Interndependence

 AHP dapat berhadapan dengan saling ketergantungan unsur-unsur di dalam suatu sistem dan tidak meminta dengan tegas atas pemikiran linier.

  1. Hierarchi structuring

AHP mencerminkan kecenderungan alami dari pikiran ke unsur-unsur jenis dari sautu sistem ke dalam tingkat yang berbeda danuntuk mengolongkan seperti unsur-unsur pada setiap tingkatan

  1. Measurement

 AHP menyediakan suatu skala untuk mengukur yang tak terukur dan suatu metoda untuk menetapkan prioritas.

  1. Consistency

 AHP taksiran pada konsistensi keputusan yang logis digunakan dalam hal yang menentukan

  1. Synthesis

 AHP memimpin ke arah suatu keseluruhan perkiraan yang menyangkut suatu keinginan dari tiap alternatif

  1. Trade offs

 AHP mempertimbangkan dengan seksama prioritas relatif faktor dalam suatu sistem dan memungkinkan orang untuk memilih alternatif yangterbaik yang berdasar atas tujuan.

  1.  Judgement and consensus

 AHP tidak meminta dengan tegas atas konsensus tetapi menyatukan suatu hasil bagian dari keputusan berbeda

  1. Process repetition

 AHP memungkinkan orang untuk memerinci definisi mereka dari suatu masalah dan untuk meningkatkan pemahaman dan pertimbangan mereka dengan melakukan pengulangan

Prinsip Dasar Analytic Hierarchy Process (AHP) (skripsi dan tesis)

Dalam menyelesaikan persoalan dengan metode AHP ada beberapa prinsip dasar yang harus dipahami antara lain.

(1)    Decomposition

Decomposition adalah memecahkan atau membagi problema yang utuh menjadi unsur — unsurnya ke bentuk hirarki proses pengambilankeputusan, dimana setiap unsur atau elemen saling berhubungan. Strukturhirarki keputusan tersebut dapat dikategorikan sebagai complete danincomplete. Suatu hirarki keputusan disebut complete jika semua elemenpada suatu tingkat memiliki hubungan terhadap semua elemen yang adapada tingkat berikutnya, sementara hirarki keputusan incompletekebalikan dari hirarki yang complete. Hirarki masalah disusun digunakan untuk membantu prosespengambilan keputusan dalam sebuah sistem dengan memperhatikanseluruh elemen keputusan yang terlibat

(2)    Comparative Judgement

Comparative Judgement adalah penilaian yang dilakukan berdasarkan kepentingan relatif dua elemen pada suatu tingkat tertentudalam kaitannya dengan tingkatan di atasnya. Comparative Judgement merupakan inti dari penggunaan AHP karena akan berpengaruh terhadapurutan prioritas dari elemen — elemennya. Hasil dari penilaian tersebutakan diperlihatkan dalam bentuk matriks pairwise comparisons yaitumatriks perbandingan berpasangan memuat tingkat preferensi beberapaalternatif untuk tiap kriteria. Skala preferensi yang digunakan yaitu skala 1yang menunjukkkan tingkat yang paling rendah (equal importance) sampaidengan skala 9 yang menunjukkan tingkatan yang paling tinggi (extremeimportance).

(3)    Synthesis of Priority

Synthesis of Priority dilakukan dengan menggunakan eigen vektormethod untuk mendapatkan bobot relatif bagi unsur—unsur pengambilankeputusan.

(4)    Logical Consistency

Logical Consistency dilakukan dengan mengagresikan seluruheigen vektor yang diperoleh dari berbagai tingkatan hirarki dan selanjutnya diperoleh suatu vektor composite tertimbang yang menghasilkan urutanpengambilan keputusan

Tahapan Dalam Analytic Hierarchy Process (AHP) (skripsi dan tesis)

Tahapan—tahapan pengambilan keputusan dalam metode AHP pada dasarnya adalah sebagai berikut:

  1. Mendefinisikan masalah dan menentukan solusi yang diinginkan
  2. Membuat struktur hirarki yang diawali dengan tujuan umum, dilanjutkandengan kriteria-kriteria dan alternaif-alternatif pilihan yang ingindirangking.
  3. Membentuk matriks perbandingan berpasangan yang menggambarkankontribusi relatif atau pengaruh setiap elemen terhadap masing-masingtujuan atau kriteria yang setingkat diatasnya. Perbandingan dilakukanberdasarkan pilihan atau judgement dari pembuat keputusan denganmenilai tingkat tingkat kepentingan suatu elemen dibandingkan elemenlainnya
  4. Menormalkan data yaitu dengan membagi nilai dari setiap elemen didalam matriks yang berpasangan dengan nilai total dari setiap kolom.
  5. Menghitung nilai eigen vector dan menguji konsistensinya, jika tidakkonsisten maka pengambilan data (preferensi) perlu diulangi. Nilai eigenvector yang dimaksud adalah nilai eigen vector maximum yang diperolehdengan menggunakan matlab maupun dengan manual.
  6. Mengulangi langkah 3, 4, dan 5 untuk seluruh tingkat hirarki.
  7. Menghitung eigen vector dari setiap matriks perbandingan berpasangan.Nilai eigen vector merupakan bobot setiap elemen. Langkah ini untukmensintesis pilihan dalam penentuan prioritas elemen-elemen pada tingkathirarki terendah sampai pencapaian tujuan.
  8. Menguji konsistensi hirarki. Jika tidak memenuhi dengan CR < 0, 100maka penilaian harus diulang kembali

Landasan Aksiomatik Analytic Hierarchy Process (AHP) (skripsi dan tesis)

Analytic Hierarchy Process (AHP) mempunyai landasan aksiomatik yang terdiri dari :

(1)Resiprocal Comparison, yang mengandung arti bahwa matriksperbandingan berpasangan yang terbentuk harus bersifat berkebalikan.Misalnya, jika A adalah f kali lebih penting dari pada B maka B adalah1/fkali lebih penting dari A.

(2) Homogenity, yaitu mengandung arti kesamaan dalam melakukanperbandingan. Misalnya, tidak dimungkinkan membandingkan jerukdengan bola tenis dalam hal rasa, akan tetapi lebih relevan jikamembandingkan dalam hal berat

(3) Dependence, yang berarti setiap level mempunyai kaitan (completehierarchy) walaupun mungkin saja terjadi hubungan yang tidak sempurna(incomplete hierarchy)

(4) Expectation, yang berarti menonjolkon penilaian yang bersifat ekspektasidan preferensi dalam pengambilan keputusan. Penilaian dapat merupakandata kuantitatif maupun yang bersifat kualitatif.

Pengertian Metode Analytic Hierarchy Process (AHP) (skripsi dan tesis)

Metode Analytic Hierarchy Process (AHP) merupakan teori umum mengenai pengukuran. Empat macam skala pengukuran yang biasanya digunakan secara berurutan adalah skala nominal, ordinal, interval dan rasio. Skala yang lebih tinggi dapat dikategorikan menjadi skala yang lebih rendah, namun tidak sebaliknya. Pendapatan per bulan yang berskala rasio dapat dikategorikan menjad itingkat pendapatan yang berskala ordinal atau kategori (tinggi, menengah, rendah) yang berskala nominal. Sebaliknya jika pada saat dilakukan pengukuran data yangdiperoleh adalah kategori atau ordinal, data yang berskala lebih tinggi tidak dapatdiperoleh. AHP mengatasi sebagian permasalahan itu. (Saaty,2001) AHP digunakan untuk menurunkan skala rasio dari beberapa perbandingan berpasangan yang bersifat diskrit maupun kontinu. Perbandingan berpasangan tersebut dapat diperoleh melalui pengukuran aktual maupun pengukuran relatif dari derajat kesukaan, atau kepentingan atau perasaan. Dengan demikian metode ini sangatberguna untuk membantu mendapatkan skala rasio dari hal-hal yang semula sulit diukur seperti pendapat, perasaan, prilaku dan kepercayaan. (Saaty,2001) Penggunaan AHP dimulai dengan membuat struktur hirarki atau jaringan daripermasalahan yang ingin diteliti. Di dalam hirarki terdapat tujuan utama, kriteria-kriteria, sub kriteria-sub kriteria dan alternatif-alternatif yang akan dibahas.

Perbandingan berpasangan dipergunakan untuk membentuk hubungan di dalamstruktur. Hasil dari perbandingan berpasangan ini akan membentuk matrik dimanaskala rasio diturunkan dalam bentuk eigen vektor utama atau fungsi-eigen. Matriktersebut berciri positif dan berbalikan, yakni aij = 1/ aji. (Saaty,2001)Sebagai studi kasus, dilakukan pengumpulan data tentang nilaikepentingan faktor-faktor yang berpengaruh dalam hal melakukan perjalananmenuju tempat kuliah. Data tersebut berupa data perbandingan berpasangandengan skala 1-9. Data yang terkumpul tersebut diolah dengan metode AHP yangsebelumnya dilakukan perhitungan geometrik rerata untuk mendapatkan matriksperbandingan berpasangan, kemudian diuji nilai consistency ratio (CR)-nya yaitudata yang CR-nya kurang dari 10% yang dianggap konsisiten. Untukmendapatkan hasil yang diharapkan, dilakukan analisa sensitivitas terhadapprioritas pemilihan alternatif moda yang ada. Analisa ini dilakukan dengan caratrial dan error pada masing-masing faktor. Dengan cara ini dapat dilihatkecenderungannya sehingga dapat diketahui pengaruhnya terhadap pergeseranprioritas pemilihan alternatif moda

Teori Efisiensi dalam metode DEA (skripsi dan tesis)

Efisiensi adalah kemampuan untuk menyelesaikan suatu pekerjaan dengan benar atau dalam pandangan matematika didefinisikan sebagai perhitungan rasio output (keluaran) dan atau input (masuk) atau jumlah keluaran yang dihasilkan dari suatu input yang digunakan.nDalam Kamus Besar Bahasa Indonesia, efisiensi diterjemahkan dengan daya guna. Ini menunjukkan bahwa efisiensi selain menekankan pada hasilnya, juga ditekankan pada daya atau usaha/pengorbanan untuk mencapai hasil tersebut agar tidak terjadi pemborosan. Sedangkan menurut Ghiselli dan Brown The term efficiency has a very exact definition, It is expessed as the ratio of output to input. Jadi, menurut Ghiselli dan Brown istilah efisiensi mempunyai pengertian yang sudah pasti, yaitu menunjukkan adanya perbandingan antara output dan input.

Farrel mengemukakan bahwa efisiesi perusahaan terdiri dari dua komponen, yaitu:18

  1. Efisiensi Teknis

Efisiensi ini mencerminkan kemampuan untuk memproduksi output semaksimal mungkin dari input yang ada. Efisien secara teknis bukan berarti efisien dalam hal efisiensi harga atau alokatif.

  1. Efisiensi Alokatif/Harga

Allocative efficiency menggambarkan kemampuan perusahaan untuk menggunakan input dalam proporsi yang optimal yang juga memasukkan perhitungan biaya. Dicision Making Unit (DMU) dianggap efisien alokatif jika DMU menghasilkan outputnya dengan biaya seminimal mungkin dengan menggunakan minimal input.

Kedua komponen ini kemudian dikombinasikan untuk menghasilkan ukuran efisiensi total atau efisiensi ekonomis (economic efficiency).

Model VRS (Variabel Return to Scale) (skripsi dan tesis)

Model ini dikembangkan oleh Banker, Charnes, dan Cooper (model BCC) pada tahun 1984 dan merupakan pengembangan dari model CCR. Model ini beranggapan bahwa perusahaan tidak atau belum beroperasi pada skala yang optimal. Asumsi dari model ini adalah bahwa rasio antara penambahan input dan output tidak sama (variable return to scale). Artinya, penambahan input sebesar x kali tidak akan menyebabkan output meningkat sebesar x kali, bisa lebih kecil atau lebih besar dari x kali. Peningkatan proporsi bisa bersifat increasing return to scale (IRS) atau bisa juga bersifat decreasing return to scale (DRS). Hasil model ini menambahkan kondisi convexity bagi nilai-nilai bobot

Model Constant Return to Scale (CRS) (skripsi dan tesis)

Model constant return to scale dikembangkan oleh Charnes, Cooper dan Rhodes (Model CCR) pada tahun 1978. Model ini mengasumsikan bahwa rasio antara penambahan input dan output adalah sama (constant return to scale). Artinya, jika ada tambahan input sebesar x kali, maka output akan meningkat sebesar x kali juga. Asumsi lain yang digunakan dalam model ini adalah bahwa setiap perusahaan atau Dicision Making Unit (DMU) beroperasi pada skala yang optimal. Nilai efisiensi selalu kurang atau sama dengan 1. DMU yang nilai efisiensinya kurang dari 1 berarti inefisiensi sedangkan DMU yang nilai efisiensinya sama dengan 1 berarti DMU tersebut efisien.

Tahapan dalam metode DEA (skripsi dan tesis)

Tahapan dalam pengukuran nilai efisiensi pada metode DEA adalah sebagai berikut :

1.Melakukan penentuan DMU (decision making unit)

2.Tentukan variabel input dan variabel output.

3.DIlakukan analisis untuk memperoleh nilai efisiensi relative. Terdapat 2 model yang sering digunakan, yakni Constant Return to Scale (CRS) dan Charnes-Cooper-Rhodes (CCR) Super Efficiency

4.DEA model CRS (Constant Return to Scale) dikenal juga dengan nama DEA model CCR (Charnes-Cooper-Rhodes). Pada model ini diperkenalkan suatu ukuran efisiensi untuk masing-masing DMU yang merupakan rasio maksimum antara output yang terbobot dengan input yang terbobot. Masing-masing nilai

bobot yang digunakan dalam rasio tersebut ditentukan dengan batasan bahwa rasio yang sama untuk tiap DMU harus memiliki nilai yang kurang dari atau sama dengan satu

Prinsip Kerja DEA (Data Envelopment Analysis) (skripsi dan tesis)

Prinsip kerja DEA adalah dengan membandingkan data input dan data output dari suatu organisasi data, atau yang disebut dengan Decission Making Unit (DMU), dengan data input dan output lainnya pada DMU yang sejenis. Perbandingan ini dilakukan untuk mendapatkan suatu nilai efisiensi.Efisiensi yang ditentukan dengan metode DEA adalah suatu nilai yang relatif, sehingga bukan merupakan suatu nilai mutlak yang dapat dicapai oleh suatu unit. DMU yang memiliki performansi terbaik akan memiliki tingkat efisiensi yang dinyatakan dalam nilai 100%, sedangkan DMU lain yang berada dibawahnya akan memiliki nilai efisiensi yang bervariasi, yaitu di antara 0% hingga 100%.

Model Linear Programing (skripsi dan tesis)

Salah satu ciri khas model linear programming adalah bahwa linear programming didukung oleh macam-macam asumsi yang menjadi tulang punggung model tersebut. Asumsi tersebut adalah sebagai berikut :

  1. Propotionality

Asumsi ini berarti bahwa naik turunnya nilai z dan penggunaan faktor-faktor produksi yang tersedia akan berubah secara sebanding (proposional) dengan perubahan tingkat kegiatan.

  1. Additivity

Asumsi ini berarti bahwa nilai tujuan tiap kegiatan tidak saling mempengaruhi, atau dalam linear programming dianggap bahwa kenaikan nilai tujuan yang diakibatkan oleh kenaikan suatu  kegiatan  dapat  ditumbuhkan  tanpa  mempengaruhi  nilai  Z  yang  diperoleh  dari kegiatan lain.

  1. Divisibility

Asumsi ini mengatakan bahwa keluaran (output) yang dihasilkan oleh suatu kegiatan dapat berupa bilangan pecahan, demikian pula nilai Z yang dihasilkan.

  1. Deterministic (certainty)

Asumsi ini mengatakan bahwa semua parameter yang terdapat dalam model linear programming (aij, bj, cj ) dapat diperkirakan dengan pasti meskipun jarang digunakan tepat.

Pengertian Linear Programing (skripsi dan tesis)

Dalam hal penetapan jumlah dan jenis produksinya yang harus dihasilkan perusahaan untuk periode tertentu dapat menggunakan metode linier programming. Dengan metode linier programming perusahaan dapat menentukan kombinasi produk yang akan dihasilkan perusahaan dengan kapasitas produksi yang dimiliki perusahaan. Untuk itu perlu diketahui bersama apa yang dimaksud dengan linier programming merurut para ahli.

Pengertian Linear Programing berdasarkan pendapat T. Hani Handoko (1999, p379) :

Linear Programing adalah suatu metode analitik paling terkenal yang merupakan suatu bagian  kelompok teknik-teknik yang disebut programisasi matematik.

Berdasarkan pendapat Sofjan Assauri (1999, p9) :

pengertian linear Programing merupakan suatu teknik perencanaan yang menggunakan model matematika dengan tujuan menemukan kombinasi-kombinasi produk yang terbaik dalam menyusun alokasi sumber daya yang terbatas guna mencapai tujuan yang digunakan secara optimal.

Berdasarkan pendapat Zainal Mustafa, EQ, dan Ali Parkhan (2000, p43)

Linear Programing  merupakan suatu cara yang lazim digunakan dalam pemecahan masalah pengalokasian sumber-sumber yang terbatas secara optimal.

Berdasarkan pendapat Zulian Yamit (1996, p14) :

Linear programming adalah  metode  atau  teknik  matematis  yang  digunakan  untuk membantu manajer dalam pengambilan keputusan. Ciri khusus penggunaan metode matematis ini adalah berusaha mendapatkan maksimisasi atau minimisasi.

Tujuan Linear Programing adalah mencari pemecahan persoalan-persoalan yang timbul dalam perusahaan, yaitu mencari keadaan yang optimal dengan memperhitungkan batasan- batasan yang ada.

Program Linier (skripsi dan tesis)

Menurut Jay Heizer dan Barry Render (2006, p676) Linear programming atau Program linear adalah teknik matematika yang banyak digunakan dimana dirancang untuk membantu manajer operasi merencanakan dan membuat keputusan yang diperlukan untuk mengalokasikan sumber daya. Sedangkan menurut Aminudin, dalam bukunya Prinsip ? prinsip Riset Operasi (2005, p.11) Linear Programming merupakan model matematik untuk mendapatkan alternative penggunaan terbaik atas sumber ? sumber organisasi. Kata sifat linier digunakan untuk menunjukkan fungsi ? fungsi matematik yang digunakan dalam bentuk linier dalam arti hubungan langsung dan persis proporsional. Jadi pengertian program linier adalah suatu teknik perencanaan yang bersifat analitis yang analisanya menggunakan model matematis, dengan tujuan menemukan beberapa kombinasi alternative pemecahan optimum terhadap persoalan.

Linear Programming (LP) adalah suatu pendekatan matematis untuk menyelesaikan suatu permasalahan agar didapatkan hasil yang optimal. Permasalahan yang sering diselesaikan dengan Linear Programming adalah product ? mix problem, dimana 2 atau lebih produk biasanya diproduksi dengan sumber daya yang terbatas. Selanjutnya perusahaan ingin mengetahui berapa banyak tiap produk harus diproduksi untuk mendapatkan profit maksimal dengan sumber daya yang terbatas tersebut.